C Surface Diffeomorphisms with No Maximal Entropy Measure

نویسنده

  • JÉRÔME BUZZI
چکیده

For any 1 ≤ r <∞, we build on the disk and therefore on any manifold, a C-diffeomorphism with no measure of maximal entropy. Résumé. Pour tout 1 ≤ r < ∞, nous construisons, sur le disque et donc sur toute variété, un difféomorphisme de classe C sans mesure d’entropie maximale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measures of Maximal Dimension for Hyperbolic Diffeomorphisms

We establish the existence of ergodic measures of maximal Hausdorff dimension for hyperbolic sets of surface diffeomorphisms. This is a dimension-theoretical version of the existence of ergodic measures of maximal entropy. The crucial difference is that while the entropy map is upper-semicontinuous, the map ν 7→ dimH ν is neither uppersemicontinuous nor lower-semicontinuous. This forces us to d...

متن کامل

The almost Borel structure of surface diffeomorphisms, Markov shifts and their factors

Extending work of Hochman, we study the almost-Borel structure, i.e., the nonatomic invariant probability measures, of symbolic systems and surface diffeomorphisms. We first classify Markov shifts and characterize them as strictly universal with respect to a natural family of classes of Borel systems. We then study their continuous factors showing that a low entropy part is almost-Borel isomorp...

متن کامل

Measures of maximal entropy

We extend the results of Walters on the uniqueness of invariant measures with maximal entropy on compact groups to an arbitrary locally compact group. We show that the maximal entropy is attained at the left Haar measure and the measure of maximal entropy is unique.

متن کامل

A Continuous, Piecewise Affine Surface Map with No Measure of Maximal Entropy

It is known that piecewise affine surface homeomorphisms always have measures of maximal entropy. This is easily seen to fail in the discontinuous case. Here we describe a piecewise affine, globally continuous surface map with no measure of maximal entropy.

متن کامل

Maximal Entropy Measures for Piecewise Affine Surface Homeomorphisms

We study the dynamics of piecewise affine surface homeomorphisms from the point of view of their entropy. Under the assumption of positive topological entropy, we establish the existence of finitely many ergodic and invariant probability measures maximizing entropy and prove a multiplicative lower bound for the number of periodic points. This is intended as a step towards the understanding of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012